Queue Layouts of Graph Products and Powers

نویسنده

  • David R. Wood
چکیده

A k-queue layout of a graph G consists of a linear order σ of V (G), and a partition of E(G) into k sets, each of which contains no two edges that are nested in σ. This paper studies queue layouts of graph products and powers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane Drawings of Queue and Deque Graphs

In stack and queue layouts the vertices of a graph are linearly ordered from left to right, where each edge corresponds to an item and the left and right end vertex of each edge represents the addition and removal of the item to the used data structure. A graph admitting a stack or queue layout is a stack or queue graph, respectively. Typical stack and queue layouts are rainbows and twists visu...

متن کامل

Stack and Queue Layouts of Directed Acyclic Graphs: Part II

Stack layouts and queue layouts of undirected graphs have been used to model problems in fault tolerant computing and in parallel process scheduling. However, problems in parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs (dags). A stack layout of a dag is similar to a stack layout of an undirected graph, with the additional requirement...

متن کامل

Mixed Linear Layouts of Planar Graphs

A k-stack (respectively, k-queue) layout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of non-crossing (non-nested) edges with respect to the vertex ordering. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout in which every edge is assigned to a stack or to a queue that use a common vertex orde...

متن کامل

Bounded-Degree Graphs have Arbitrarily Large Queue-Number

We consider graphs possibly with loops but with no parallel edges. A graph without loops is simple. Let G be a graph with vertex set V (G) and edge set E(G). If S ⊆ E(G) then G[S] denotes the spanning subgraph of G with edge set S. We say G is ordered if V (G) = {1, 2, . . . , |V (G)|}. Let G be an ordered graph. Let `(e) and r(e) denote the endpoints of each edge e ∈ E(G) such that `(e) ≤ r(e)...

متن کامل

On Linear Layouts of Graphs

In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A k-stack (respectively, k-queue, k-arch) layout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of pairwise non-crossing (respectively, non-nested, non-disjoint) edges. Motivated by numerous applications, stack layouts (also call...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics & Theoretical Computer Science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2005